日韩欧美一区二区三区免费观看_精品国产欧美一区二区_波多野结衣乱码中文字幕_最新无码国产在线视频2021

安科瑞電氣股份有限公司

充電樁產品
熱銷產品
消防火災類監控系統
電力儀表
電能管理設備
系統集成
安全用電電氣安全
電能管理系統
電力監控與保護
電氣防火限流式保護器 AM系列 AMB智能小母線 AMC系列多回路監控裝置 PZ系列直流檢測儀表 PZ96B系列數顯控制儀表 管廊產品選型 ARTM100在線測溫系統 微機保護裝置 電動機保護器 數顯溫濕度控制器 自復式過欠壓保護器 智能照明控制系統 PZ系列可編程智能電測表 ARDP智能水泵控制器 ARD系列智能電動機保護器 AMC16系列監控裝置 WH系列溫濕度控制器 智能光伏防雷直流柜 M系列中壓保護裝置 AGF-D系列光伏直流采集裝置 APSM直流電源監控系統 AGF系列導軌式智能光伏匯流采集裝置 APV系列智能光伏匯流箱 ADDC智能空調節能控制器 AGP風力發電測量保護模塊 AGF-IM光伏直流絕緣監測裝置 并網逆變器 ACTB電流互感器過電壓保護器 ASD系列開關柜綜合測控裝置 ARTM系列溫度巡檢測控儀 ASJ系列智能電力繼電器 ACM配電線路過負荷監控裝置 ALP智能型低壓線路保護裝置 ARTU系列四遙單元 SVC動態無功補償及濾波裝置 AZG智能配電柜、AZX智能配電箱 ARC功率因數自動補償控制儀 AZX-J低壓智能計量箱 AZX-Z智能照明控制箱
電量傳感器
認證電流互感器 AKH-0.66 J系列計量型電流互感器 AKH-0.66 Z型系列三相導軌式電流互感器 AKH-0.66 W系列電流互感器 電流互感器 ARU系列浪涌保護器 BD系列電力變送器 BM系列模擬信號隔離器 BA系列電流傳感器 BR系列羅氏線圈變送器 AMZK環網柜低壓開合式電流互感器 AKH-L序電流互感器 LMZD-0.66(AKH-0.66ZD)計量型電流互感器 JDG4-0.5電壓互感器 AKH-0.66/H戶外型電流互感器 AKH-3.3/P-φ型中壓電動機保護電流互感器 AKH-0.66/J系列計量型電流互感器 AKH-0.66/D型導軌式電流互感器 霍爾電流傳感器 W微型電流互感器 LQZJ4-0.66(AKH-0.66/Q)型計量用電流互感器 AKH-0.66K圓形開口式電流互感器 AKH-0.66K開口電流互感器 AKH-0.66G計量型電流互感器 AKH-0.66L剩余電流互感器 AKH-0.66S系列雙繞組型電流互感器 AKH-0.66P保護型電流互感器 AKH-0.66 Z型電流互感器 AKH-0.66 M8型電流互感器 AKH-0.66/III 測量型電流互感器 AKH-0.66/II 測量型電流互感器 AKH-0.66/I 測量型電流互感器
電源管理系統之鋰電池管理系統
電能質量治理
電瓶車充電樁
充電器
油煙監測
消防應急照明和疏散系統
火災自動報警
智能網關
學校行業解決方案
新能源相關產品

淺析新型電氣火災預警系統的研究

時間:2023/11/3閱讀:464

劉細鳳

(安科瑞電氣股份有限公司 上海嘉定 201801)

【摘要】針對現有電氣火災預警技術存在監測功能不夠全面以及智能決策不夠完善等問題,開發了一種新型電氣火災預警系統。首先,使用多個不同類型的單參量采集模塊來采集火情現場數據,再將采集到的數據匯集到參量匯集模塊,完成多參量采集;其次,參量匯集模塊通過兩級制數據傳輸網絡,即ZigBee本地無線通訊和NB-IoT遠程聯網通訊,將火情現場數據上傳至云平臺;而后,云平臺對數據進行相應運算與處理,運用智能識別算法,實現火災預警。基于該系統,可及時預警和提前預判火情現場,減少人員傷亡和財產損失。

【關鍵詞】電氣火災預警,ZigBee,NB-IoT,智能識別算法

0引言

近年來,我國電氣火災多發,造成重大人員傷亡和財產損失。據統計,2020年,因違反電氣安裝使用規定引發的火災共8.5萬起,占總數的33.6%,重特大火災中電氣火災占比高達55.4%,目前,已有一些電氣火災預警問題的相關研究:葉研等研究了基于CAN總線的實驗樓火災預警系統,將數據通過CAN總線發送到控制部分完成數據處理,提高了火災預警系統的可靠性和反饋速度;張夢媛設計了一款基于物聯網技術的無線火災智能預警系統,采用ZigBee協議,利用各傳感器進行檢測,通過蜂窩移動通信技術將火災情況發送至消防站,達到火災預警的目的,于蘭等研究了基于神經網絡技術的電氣火災預警系統,利用BP神經網絡判斷電氣火災是否發生故障,增強了電氣火災系統的預警能力。但當前電氣火災預警系統仍存在一些不足,例如,傳感器采集參數不夠全面,影響評價結果;使用多個不同類型的傳感器采集數據,但這些參量之間部分或全部存在非線性依賴關系,單純通過這些數值來進行報警不夠科學智能決策不夠完善等。本文提出一種新型電氣火災預警系統,通過多個參量采集模塊,將采集到的現場火情數據發送給參量匯集模塊;數據傳輸模塊(含ZigBee協調器)接收參量匯集模塊(即ZigBee終端節點)發送的有關數據,再通過NB-IoT模塊將數據上傳給云平臺,由此構成兩級制無線通信物聯網架構。云平臺對傳感器采集到的多個變量參數進行融合分析,建立火災狀態與多變量參數之間的非線性數學模型。基于該模型,根據多變量數據,計算得出火災發生的概率,從而達到預警的目的。

1系統整體設計

系統整體結構如圖1所示,由參量采集模塊、參量匯集模塊、數據傳輸模塊、云平臺及客戶端組成。參量采集模塊負責連接傳感器,感知火情現場;參量匯集模塊負責匯集與上傳火情現場數據;數據傳輸模塊作為通信橋梁,負責參量匯集模塊與云平臺之間的信息傳遞;云平臺則負責運算及處理數據信息,計算得出火災發生的概率,并發送信息至客戶端,客戶端可相應呈現火災預警信息。

2硬件構成

單參量采集模塊、參量匯集模塊硬件構成如圖2所示。火情現場數據的采集由單參量采集模塊和參量匯集模塊共同完成。

參量采集模塊包括傳感器、信號處理電路、MCU,并通過工業標準接口(232、485、I2C、SPI等)與參量匯集模塊連接。根據火情現場情況,選取煙霧、溫度、火焰、電參數(包括入戶母線電壓、電流、有功功率、無功功率或功率因數)等傳感器進行數據采集,經信號處理電路處理后送入MCU,再通過標準接口。根據約定的通訊協議,將火情現場數據傳輸給參量匯集模塊。參量匯集模塊以無線MCU(ZigBee終端節點)為核心。通過標準接口與單參量采集模塊有線連接,接收單參量采集模塊發送的火情現場數據,再通過ZigBee網絡轉發給

ZigBee協調器。數據傳輸模塊結構如圖3所示,主要由ARM微處理器.ZigBee協調器以及NB-IoT模塊組成。

各參量匯集模塊作為ZigBee終端節點加入網絡,ZigBee協調器接收多個參量匯集模塊上傳的火情現場數據。ARM微處理器負責統籌處理數據本地傳輸、遠程傳輸,以及相應的解析及轉換,NB-IoT模塊將火情現場數據等信息遠程發送至云平臺進行處理。

3軟件設計

3.1數據采集

數據采集過程完成對火情現場數據的采集,其軟件流程如圖4所示。

初始化完成后,參量采集模塊需要通過相應的傳感器采集現場數據,處理完相關數據后,將數據傳輸至參量匯集模塊。

3.2數據傳輸

數據傳輸是指將參量匯集模塊接收到的多組火情現場數據上傳至云平臺的過程,其軟件流程如圖5所示。

ZigBee協調器檢測周圍網絡狀態,建立網絡。參量匯集模塊作為終端節點入網后,將數據轉發至ZigBee協調器,協調器接收到上傳的火情現場數據,通過串口通信將數據發送給ARM微處理器,ARM微處理器對數據解析、打包后,由NB-IoT模塊上傳至云平臺完成數據處理,*終實現火災預警。

3.3數據處理

數據處理是指在云平臺對上傳的火情現場數據進行運算與處理的過程,其軟件流程如圖6所示。

云平臺完成初始化后,首先接收火災監測現場的位置以及火情現場數據等信息,運算與處理上傳數據中的多個變量,隨后建立火災現場狀態與多變量參數之間的非線性數學模型。基于該模型,依據采集的多變量數據,通過智能算法計算得出火災發生的概率,然后發送火災預警信息至客戶端。

4智能識別算法

本文提出的火災預警智能識別算法,可融合分析傳感器采集的多個變量,基于半監督學習方法,自動實現變量分類,并通過求解算法,建立火災現場狀態與多變量參數之間的非線性數學模型。基于該模型,依據采集的多變量數據,然后得出火災發生的概率,達到預警的目的。算法包含兩部分。

(1)基于稀疏編碼的結構特征提取方法

其對應的學習網絡結構如圖7所示。

記樣本數量為N,樣本維度為D,則第i個樣本可表示為ai={ai1,ai2,......aid},則自動編碼器參數訓練的目標為輸出數據接近輸入數據,即

式中=為輸入樣本集合狙為相應的輸出值集合。

(2)多類SVM的實現

SVM在解決小樣本、非線性以及高緯模式識別問題中具有優勢,但傳統的SVM僅用于解決兩類分類問題,不能直接用于多類分類。本文采用一對一訓練策略來實現多類SVM的分類,為每類構造一個SVM,通過粒子群(PSO)算法實現對SVM參數的優化,并采用稀疏自編碼器獲取的特征參數訓練多類SVM,從而實現完整的智能識別算法。云平臺對各參量匯集模塊傳來的數據進行智能計算與分析,判斷當前是否有預警發生,若有,云平臺首先通過嵌入式網關的IMEI碼,定位當前發生預警的監測點位置。再通過該監測點對應的ZigBee網絡,定位該監測點區域內發生預警的參量匯集模塊對應的位置。此外,云平臺還可判斷出當前預警的嚴重等級,可保證在多個監測點同時發生預警時,工作人員可根據嚴重等級,合理安排處理順序,云平臺可將這些定位及預警等級信息推送到計算機或智能手機客戶端上,工作人員可接收到推送的預警信息,及時采取相應的處理措施。

5安科瑞電氣火災監控系統

(1)概述

Acre1-6000電氣火災監控系統,是根據中心的消防電子產品試驗認證,并且均通過嚴格的EMC電磁兼容試驗,保證了該系列產品在低壓配電系統中的安全正常運行,現均已批量生產并在全國得到廣泛地應用。該系統通過對剩余電流、過電流、過電壓、溫度和故障電弧等信號的采集與監視,實現對電氣火災的早期預防和報警,當必要時還能聯動切除被檢測到剩余電流、溫度和故障電弧等超標的配電回路;并根據用戶的需求,還可以滿足與AcreIEMS企業微電網管理云平臺或火災自動報警系統等進行數據交換和共享。

(2)應用場合

適用于智能樓宇、高層公寓、賓館、飯店、商廈、工礦企業、國家重點消防單位以及石油化工、文教衛生、金融、電信等領域。

(3)系統結構

(4)系統功能

監控設備能接收多臺探測器的剩余電流、溫度信息,報警時發出聲、光報警信號,同時設備上紅色“報警"指示燈亮,顯示屏指示報警部位及報警類型,記錄報警時間,聲光報警一直保持,直至按設備的“復位"按鈕或觸摸屏的“復位"按鍵遠程對探測器實現復位。對于聲音報警信號也可以使用觸摸屏“消聲"按鍵手動消除222

當被監測回路報警時,控制輸出繼電器閉合,用于控制被保護電路或其他設備,當報警消除后,控制輸出繼電器釋放。

通訊故障報警:當監控設備與所接的任一臺探測器之間發生通訊故障或探測器本身發生故障時,監控畫面中相應的探測器顯示故障提示,同時設備上的黃色“故障"指示燈亮,并發出故障報警聲音。電源故障報警:當主電源或備用電源發生故障時,監控設備也發出聲光報警信號并顯示故障信息,可進入相應的界面查看詳細信息并可解除報警聲111

當發生剩余電流、超溫報警或通訊、電源故障時,將報警部位、故障信息、報警時間等信息存儲在數據庫中,當報警解除、排除故障時,同樣予以記錄。歷史數據提供多種便捷、快速的查詢方法。

事件頁面

(5)配置方案

應用場合

型號

產品照片

功能

消防控制室

Acrel-6000/B

適用于1~4條通信總線*多可連接256個探測器,可適用于壁掛安裝的場所。

Acrel-6000/Q

適用于大型組網,壁掛式監控主機數量較多且需集中查看的場所,主要監測壁掛主機信息。

一、二級

低壓配電

ARCM200L-Z2

三相(I、U、kW、Kvar、kWh、Kvarh、Hz、cos中),視在電能、四象限電能計量,單回路剩余電流監測,4路溫度監測,2路繼電器輸出,4路開關量輸入,事件記錄,內置時鐘,點陣式LCD顯示,2路獨立RS485/Modbus通訊

ARCM200L-J8

8路剩余電流監測,2路繼電器輸出,4路開關量輸入,事件記錄,內置時鐘,點陣式LCD顯示,1路RS485/Modbus通訊

ARCM300-J1

1路剩余電流監測,4路溫度監測,1路繼電器輸出,事件記錄,LCD顯示,1路RS485/Modbus通訊

AAFD-□

檢測末端線路的故障電弧,485通訊,導軌式安裝。

ASCP200-□

短路限流保護、過載保護、內部超溫限流保護、過欠壓保護、漏電監測、線纜溫度監測,1路RS485通訊,1路GPRS或NB無線通訊,額定電流為0-40A可設。

短路限流保護、過載保護、內部超溫限流保護、過欠壓保護、漏電監測、線纜溫度監測,1路RS485通訊,1路NB或4G無線通訊,額定電流為0-63A可設。

配套附件

AKH-0.66

測量型互感器,采集交流電流信號

AKH-0.66/L

剩余電流互感器,采集剩余電流信號

ARCM-NTC

溫度傳感器,采集線纜或配電箱體溫度

6結語

本文利用參量采集模塊采集火情現場數據并上傳至參量匯集模塊,通過ZigBee網絡和NB-IoT模塊將數據上傳至云平臺,云平臺融合分析傳感器采集到的多個變量,并通過求解算法,得出火災發生的概率并將其發送至客戶端,據此提醒工作人員及時采取措施。基于該系統,及時預警火情現場,提前預判。從而減少人員傷亡和財產損失。

參考文獻

[1] 閆傳令,李紅艷.冶山礦業公司“六大系統"的建設及應用[J]. 現代礦業,2014,30(12):186-187.

[2] 張紀飛.煤礦井下自動化供水索統的設計應用[J].山東煤炭科技,2021,39(7):135-137.

[3] 馬莉.煤礦供水系統優化改造的研究[J].當代化工研究,2021(5) :92-93.

[4] 劉文峰,孟祥忠.煤礦深井多水平恒壓供水系統的研究與應用[J].工業儀表與自動化裝置,2020(4):25-28+47.

[5] 孫派,吳志強,蘇瑞.礦井供水管網在線監測自控技術研究實踐[J].中小企業管理與科技(下旬刊),2013(4):240.

[6]魏立明,楊坤,陳妍希.建筑電氣火炎預警系統的綜述研究[J]. 吉林建筑大學學報,2017,34(3):112-115.

[7] 藍雄,劉勝永.軸承故障稀疏編碼特征提取與多分類SVM識別[J].機械設計與制造,2020(10):182-186.

[8]周文潮,周子涵,靳沖.基于SVM的變壓器局部放電故障診斷研究[J].鐵路通信信號工程技術,2022,19(S1):137-140.

[9] 范婕,許欣怡,周詩崠等.基于PSO-SVM的天然氣水合物生成條件預測[J].天然氣化工—C1化學與化工,2022,47(5):171-176.

[10]龍興林,俞鑒鋒,劉學勇,方永達.一種新型電氣火災預警系統研究 [A].傳感檢測與儀器儀表.2023(13)-1133

[11] 安科瑞企業微電網設計與應用手冊2022.05版.

作者簡介

劉細鳳,女,安科瑞電氣股份有限公司,主要研究方向為電氣火災系統的設計與應用

會員登錄

X

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

X
該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時間回復您~
在線留言
主站蜘蛛池模板: 平阳县| 泊头市| 漳浦县| 永康市| 曲水县| 长海县| 枝江市| 卢湾区| 桂平市| 额敏县| 竹北市| 阳谷县| 陇南市| 玉环县| 兴宁市| 福泉市| 吴忠市| 长岭县| 建始县| 玉门市| 萍乡市| 乳源| 澜沧| 珲春市| 遵义县| 蕲春县| 密云县| 江城| 武功县| 怀安县| 铜川市| 当阳市| 梓潼县| 临猗县| 蚌埠市| 安平县| 荔浦县| 平远县| 佛冈县| 嘉义市| 海丰县|