0.5噸的一體化污水處理設備生產工藝
目前,醫院污水綜合處理設備在醫院污水處理工作中起著非常重要的作用。事實上,在選擇任何設備時,我們都應該考慮一些基本的因素,所以在選擇綜合醫院污水處理設備時,我們應該考慮哪些因素?
首先,對設備的加工效果進行了分析。主要從處理設備水力負荷、溫度變化、水質等方面分析,由于醫院污水排放具有間歇性和集中性,且水質變化范圍廣,所以處理設備水力負荷沖擊阻力大。ce應較大,并應考慮在冬季低溫條件下運行設施以確保。年處理設施運行正常,排水水質達到排放標準。
其次,設備的運行成本。這主要是從處理設施建設方面,應考慮使用較便宜的材料和設備及技術,盡量采用當地材料,以滿足需求的前提下,以簡單實用為原則,進行污水收集管網建設。因此,城市污水處理項目投資占醫院污水處理項目投資的很大比例。合理選擇污水收集方法和處理設備是非常重要的。因此,低成本的建筑材料和設備、低操作和維護成本是低成本綜合醫院污水處理設備的基本要求。
另一點是,設備的維護應該盡可能少。從運行管理方面考慮,無論是人員素質還是維修經費都要求醫療設施盡量減少人工干預。因此,要考慮醫院污水的特點,處理設備應具有維護少、操作簡便、運行成本低的特點,污水處理的運行、維護和安全應符合國家有關標準。
一體化醫院污水處理設備在處理工藝上,因為要處理的水質的復雜性,因此,在處理工藝上也相應的有復雜的特點。那么,一體化醫院污水處理設備的殺菌消毒處理工藝的流程是怎樣的呢?這就是小編今天想要跟大家來介紹的一個問題。
一體化醫院污水處理設備設計調節池非常重要,醫療污水處理設備調節池不但可以調節水量,消滅高峰負荷,并可以調節水質,使其處理效果不會因水質變化而受到干擾。二氧化氯消毒劑的投加點一般選擇在調節池之后。
國內醫院使用的消毒劑以液lv和次氯酸鈉為主。液lv雖然價格較低,但安全性較差,易于泄露,且氯與有機物作用會生成有機鹵代物,進入水體后造成新的污染,威脅人類健康。雖然沒有以上的危險,但其關鍵部件損壞,體積大,電耗和鹽耗都較高,操作管理不便。
為保證取得良好的殺菌效果,污水和消毒劑在接觸消毒池中停留時間一般不應小于1小時二氧化氯發生器還可根據流量信號或其他信號自動控制發生器的運行,確保接觸消毒池中二氧化氯的濃度,*殺滅有害微生物。
以上為大家介紹的就是一體化醫院污水處理設備殺菌消毒處理工藝的處理流程,希望以上介紹能夠為您帶來一定的幫助。
1、AO脫氮工藝原理及優缺點
A/O脫氮工藝是將前段缺氧段和后段好氧段串聯在一起,A段DO(溶解氧)不大于0.2mg/L,O段DO=2~4mg/L。
在缺氧段(A池)異養菌將蛋白質、脂肪等污染物進行氨化(有機鏈上的N或氨基酸中的氨基)代謝為NH3-N,在曝氣池中充足供氧條件下,在硝化細菌的硝化作用將NH3-N氧化為NO3-(或NO2-),通過內回流控制返回至A池,在缺氧條件下,反硝化細菌在反硝化作用將NO3-還原為分子態氮(N2)完成C、N、O在生態中的循環,實現污水無害化處理。
AO脫氮工藝中缺氧池(A池)在前,污水中的有機碳被反硝化菌所利用,可減輕其后好氧池的有機負荷,反硝化反應產生的堿度可以補償好氧池中進行硝化反應對堿度的需求。好氧在缺氧池之后,可以使反硝化殘留的有機污染物得到進一步去除,提高出水水質。BOD5的去除率較高可達90~95%以上,但脫氮效果稍差,脫氮效率70~80%。盡管如此,由于A/O工藝比較簡單,也有其突出的特點,目前仍是比較普遍采用的工藝。在高氨氮廢水中一般采取二級AO串聯的方式設計!
2、提高脫氮效果的控制措施
A/O工藝運行過程控制不要產生污泥膨脹和流失,其對有機物的降解率是較高的(90~95%),缺點是脫氮效果較差。為了提高脫氮效果,A/O脫氮工藝主要控制幾個因素:
1、MLSS
一般應在3000mg/L以上,低于此值A/O系統脫氮效果明顯降低。
2、氨氮負荷
在硝化反應中氨氮負荷(氨氮的量實際值為有機氮與氨氮的和,也就是凱氏氮TKN)在0.05gTKN/(gMLSS•d)之下。
3、污泥負荷
要使硝化菌良好繁殖就要增大MLSS濃度或增大曝氣池容積,以降低有機負荷,從而增大污泥齡。其污泥負荷率(COD/MLSS)應小于0.10~0.15KgCOD/KgMLSS•d。
4、污泥齡
在硝化反應中,影響硝化的主要因素是硝化菌的存在和活性,因為自養型硝化菌zui小比增長速度為0.21/d;而異養型好氧菌的zui小比增殖速度為1.2/d。前者比后者的比增殖速度小得多。要使硝化菌存活并占優勢,要求污泥齡大于4.76d;但對于異養型好氧菌,則污泥齡只需0.8d。在傳統活性污泥法中,由于污泥齡只有2~4d,所以硝化菌不能存活并占有優勢,不能完成硝化任務。
5、曝氣池進水碳源
進入硝化池BOD5值應控制在80mg/L以下,當BOD5濃度過高,異養菌迅速繁殖,與自養菌爭奪氧氣,并成為優勢菌種,使硝化細菌不占優勢,硝化反應降低直致崩潰。
6、內回流(硝化液回流)
內回流的大小直接影響反硝化脫氮效果,內回流增大,脫氮率提高,但內回流增大增加電能消耗增加運行費。內回流比一般控制在300~500%!
7、CN比
為了保證足夠的反硝化,一般控制CN比在4~6,否則反硝化不*,導致除氮效果下降!
8、硝化池溶解氧
DO>2mg/L,一般充足供氧DO應保持2~4mg/L,滿足硝化需氧量要求,按計算氧化1gNH4+需4.57g氧。
9、水力停留時間
硝化反應水力停留時間>6h;而反硝化水力停留時間2h,兩者之比為3:1,否則脫氮效率迅速下降。
10、PH與堿度
硝化反應過程生成HNO3使混合液pH下降,而硝化菌對pH很敏感,硝化*pH =8.0~8.4,為了保持適宜的PH就應采取相應措施,計算可知,使1g氨氮(NH3-N)*硝化,約需堿度7.1g(以CaCO3計);反硝化過程產生的堿度(3.75g堿度/gNOx--N)可補償硝化反應消耗堿度的一半左右。反硝化反應的zui適宜pH值為6.5~7.5,大于8、小于7均不利。
11、溫度
硝化反應20~30℃,低于5℃硝化反應幾乎停止;反硝化反應20~40℃,低于15℃反硝化速率迅速下降。
因此,在冬季應提高反硝化的污泥齡ts,降低負荷率,提高水力停留時間等措施保持反硝化速率。
12、進水氨氮的濃度
硝化反應是將氨態氮轉化為亞硝態氮,再亞硝酸菌氧化為硝態氮。有研究表明當氨氮濃度較低時,隨著濃度的增加,氨氧化速率和亞硝酸氧化速率均增加,而且亞硝酸氧化速率增長較快,當濃度增大到一定程度,反應速率均減小。
平常運營過程中,總結的經驗為氨氮起始濃度(好氧池前端)市政高于 100mg/l 硝化反應,工業高于 150mg/l 將受到一定程度抑制。(高氮氮廢水可以通過回流稀釋等避免起始濃度的影響,比如養殖,垃圾滲濾液等)
13、鹽分
在生物法處理高鹽含氮廢水的過程中,鹽分能夠直接影響溶解氧濃度及氧氣轉移到液相的能力,引起硝化微生物新陳代謝功能、活性污泥沉降性、顆粒污泥以及生物膜結構改變,導致生物絮體或胞外聚合物解體從而影響硝化效率。
根據經驗:硝化反應的氯小于2000mg/l 的情況下正常進行 ;當然如果進水比較穩定,可以馴化耐鹽,耐氯,氯在5000mg/L也能正常進行。氯的影響在于波動性,如果進水波動大,硝化受的影響就大,很容易流失!
14、有毒有害物質(抑制物)
有毒有害物質對于所有微生物,細菌都是致命的作用。硝化細菌也不例外。下面介紹一下有毒有害物質:有毒有害物質是指抗生素等殺菌物質,也包含影響硝化反應酶活性的物質,比如重金屬及其有機化合物。盡量防止這些物質進入系統。
抑制性物質:抑制硝化的物質主要有重金屬、酚、硫脲及其衍生物、 游離氨、雙氧水等。有毒有害物質對于微生物是致命的,所以在處理一些含有毒有害物質的污水時一定要做好預處理,防止有毒有害物質進入生化池!
0.5噸的一體化污水處理設備生產工藝