處理量 |
3000m3/h |
加工定制 |
是 |
主體材質 |
玻璃鋼 |
淮安高濃度廢水處理設備距離近發貨快且如今我國人民的環保意識不斷增強,國家對于環境問題也同樣日益重視,工業廢水排放的水質要求比以往更加嚴格。因此,要選擇合適合理的方法方案進行處理,使工業廢水水質達到規定要求的排放標準,對其處理技術方法要求尤為重要。
淮安高濃度廢水處理設備距離近發貨快
隨著工業的快速發展,高濃度廢水的產生量不斷增加,對環境造成了嚴重污染。高濃度廢水含有大量的有機物、重金屬離子和其他有害物質,如果直接排放,會對環境造成嚴重危害。因此,高濃度廢水處理技術對于保護環境、提高資源利用效率具有重要意義。
高濃度廢水處理技術流程
預處理
預處理是高濃度廢水處理的第一個環節,主要包括調節池、沉淀池等設備。調節池用于調節廢水的水量和水質;沉淀池用于去除廢水中的懸浮物。
主處理
主處理是高濃度廢水處理的核心環節,主要包括物理法、化學法和生物法等方法。物理法主要通過過濾、吸附等方法去除廢水中的懸浮物和部分有機物;化學法主要通過投加化學藥劑,使廢水中的有害物質與藥劑發生反應,生成沉淀物或氣體,從而去除有害物質;生物法主要利用微生物的代謝作用,將廢水中的有機物轉化為無害物質。
后處理
后處理是高濃度廢水處理的最后一道工序,主要包括消毒、脫鹽和除臭等處理。消毒主要是通過投加氯氣等消毒劑殺滅廢水中的細菌和病毒;脫鹽主要是通過反滲透等方法去除廢水中的鹽分;除臭主要是通過活性炭吸附等方法去除廢水中的異味。
高濃度有機廢水處理的問題,是當前世界污水處理的難題。所謂高濃度廢水是指一些高濃度、高含鹽、高難降解的廢水。水質成分復雜,有機物含量高,COD一般在10000mg/L以上,甚至高達幾萬至幾十萬毫克每升。且一般含有毒有害物質,含鹽量也,具有強酸強堿性,不能直接進行生化處理。
這類工業廢水一般產自焦化行業、制藥行業、石化/油類行業、紡織/印染行業、化工行業、油漆行業等行業。此類高濃度有機廢水對環境的污染較大,影響時間持久,若處理不當不但會對生態環境,也會對人類自身造成損害。
且如今我國人民的環保意識不斷增強,國家對于環境問題也同樣日益重視,工業廢水排放的水質要求比以往更加嚴格。因此,要選擇合適合理的方法方案進行處理,使工業廢水水質達到規定要求的排放標準,對其處理技術方法要求尤為重要。
技術發展方向的現狀
對于此類有機污染物含量較高、可生化性較差的高濃度有機廢水,如果單獨使用物化法或膜法等傳統處理方法進行處理,往往難以達到理想的處理效果。
比如物化法就存在許多的缺陷和不足,目前常用的物化處理技術包括:微電解、Fenton氧化、電催化、微波催化、臭氧催化、二氧化氯氧化等傳統技術。這些技術大多有著投資大、處理成本高、處理效果十分有限、抗沖擊能力差等缺陷。尤其是當廢水中有機污染物濃度高于20000mg/l時,傳統物化法需投加大量氧化劑,致使處理成本居高不下,而COD去除率僅為10%-30%,還會產生新的物質,造成二次污染。
處理常用的膜法也同樣存在的局限性,水處理常規膜處理法也有相當的劣勢,其對進水水質的要求,并且投資巨大,回收利用率較低,而且產生的濃縮液更難處理,前段生化系統對污染物處理不會導致深度處理所需膜組件的污染,影響處理效果。當TDS變高時,膜處理的脫鹽率會急劇的下降,同時有著膜污染、堵塞、腐蝕、使用壽命短等諸多待解決的問題。
同樣的,運用生化處理技術處理高濃度廢水也存在一定的限制與弊端。生化處理技術的使用條件受有機物濃度所限制,只能處理有機物濃度處于中低水平范圍的有機廢水,對于濃度很高的焦化廢水,以及富含油,酚等有機物的廢水需要進行預先的稀釋和前處理。
而厭氧過程中微生物繁殖慢,因此反應器啟動過程緩慢,需要7~13周時間,增加了工作量和運行費用。曝氣池的首端有機物負荷較高,因此耗氧速率較高,為了避免由于缺氧而形成厭氧狀態,進水的有機物濃度不宜過高,這導致了曝氣池必須為較大容積、較大占地面積,導致基建費用較高。生物處理技術對進水水質、水量變化的適應性較低,運行結果容易受到水質、水量變化的影響,脫氮除磷效果也不太理想。
同時,餐廚垃圾是城市生活垃圾的主要組成之一,其產生量也在逐年增加。由前瞻產業研究院的統計數據得知,2015年全國產生餐廚垃圾9500萬噸,到2016年全國餐廚垃圾產生量增至9700萬噸,與污泥一樣,餐廚垃圾成為了影響環境衛生和公眾健康,甚至是威脅食品安全的又一難題。
2、污泥與餐廚垃圾單獨厭氧消化難點
在廢棄物的處理處置與資源化方法中,厭氧消化既可以實現其減容減量,降低或消除廢棄物對環境的危害,又能獲得沼氣形式的清潔能源從而緩解當今的能源供需壓力,此方法得到了國內外的青睞。對污水污泥與餐廚垃圾來說,兩者均是常見的有機廢棄物,然而其單獨厭氧消化產沼氣效果卻并不十分理想。
污泥有機C含量較低,蛋白質含量較高,相對于有機C而言,蛋白質降解速率較慢,加之污泥中的大部分有機C為被細胞壁所包裹的微生物細胞物質,可生物降解能力較低,所以污泥單獨厭氧消化時降解速度較慢,揮發性固體的去除率和產氣量一般也較低。同時,由于污泥的C/N較低,厭氧消化時含N物質會較快地溶出而發生氨氮的積累,造成厭氧消化體系營養物質的配比失衡,進而導致厭氧消化進程的抑制。同時,污泥厭氧消化系統能否可持續運行還與其處理規模密切相關。這是因為污泥厭氧消化項目投資大,運行費用高,在規模經濟的作用下,大型污泥厭氧消化項目最有可能實現收益與投入的平衡,故停運率較低,而小規模污泥厭氧項目的收益不足以平衡投資和運行費用。
餐廚垃圾的主要組成成分為水分、碳水化合物、蛋白質、脂肪和鹽分,并富含氮、磷、鈣、鉀等營養元素,其中有機成分在總固體中的含量很高,可高達95%以上。餐廚垃圾的C/N較高,易被生物降解,單獨厭氧消化時速度較快。但由于產甲烷菌生長過程相對較緩慢,因此可能引起揮發性有機酸等中間代謝產物的毒性抑制,甚至導致厭氧消化系統的酸化失效。此外,由于餐廚垃圾固體含量高,流動性差,不易與厭氧微生物實現充分的混合,進而影響厭氧效果。
淮安高濃度廢水處理設備距離近發貨快
綜上所述,單獨對污泥和餐廚垃圾進行厭氧消化時,產沼效率和效果均不理想。
3、聯合厭氧消化的可行性分析
為了較好解決兩者分別進行單獨厭氧消化時的一些問題,出現了將餐廚垃圾和污泥進行聯合厭氧工藝,并在國內外引起了研究熱潮。在國內,付勝濤、嚴曉菊和于水利,高瑞麗、嚴群以及趙云飛等都分別開展了分析研究,證實了污泥和餐廚垃圾聯合厭氧消化的可行性,主要體現在以下幾方面。
(1)污泥C/N比較低,降解速率慢,污泥單獨厭氧發酵時易產生氨氮的抑制,而餐廚垃圾C/N則比較高,卻會因餐廚垃圾厭氧消化速度與產甲烷菌生長速度不均衡而引起揮發性有機酸等中間代謝產物積累,甚至引起系統酸化。故兩者聯合厭氧,即可以調節C/N,提高厭氧系統的生物降解性,從而改善污泥的降解速率,又可以使產生的揮發性有機酸與氨氮等中間代謝產物進行部分中和反應,避免揮發性有機酸等中間代謝產物的積累,調節厭氧過程中的pH值,防止厭氧消化系統的酸化失效,維持厭氧系統的穩定運行。
(2)污泥中含有大量微生物,適合作為厭氧消化的菌種來源,而餐廚垃圾含有豐富的可溶醣,可生物降解性較好,非常適合作為厭氧消化的底物,故兩者聯合厭氧可以促進厭氧消化優勢菌種的形成,有助于混合底物厭氧消化過程的進行,以縮短厭氧消化時間。
(3)餐廚垃圾和污泥進行聯合厭氧消化可以補充各自成分中缺少的營養物質,使厭氧消化底物中的營養成分達到較好的平衡。
(4)餐廚垃圾和污泥聯合厭氧消化可直接采用現有的污泥消化池,有利于降低成本,并為通過在污泥消化池中添加餐廚垃圾來擴大處理規模提供了便利條件,有利于促進規模經濟效益的實現。而且根據已有研究成果,在聯合厭氧消化工藝中,兩種廢棄物的厭氧消化性能得到了明顯改善,沼氣產量也得到了不同程度的提高,從而提高經濟效益。
4、聯合厭氧消化技術研究及應用
目前國內外已開展了一些污泥和餐廚垃圾聯合厭氧消化技術的研究,但總體來看,國內外的相關報道并不多,且已有的研究主要集中在污泥和餐廚垃圾聯合厭氧消化的技術、經濟與工程可行性,以及pH值、溫度、混合比例等工藝參數對聯合厭氧消化反應過程的影響分析方面,而對聯合厭氧消化的協同反應機理以及其中有機質降解調控機制尚缺乏深入系統的研究。尤其是在我國,重復性研究較多,而對擁有自有知識產權的、具有技術突破性的相關技術和設備研發力度不足。通過對國內外現有污泥和餐廚垃圾聯合厭氧消化信息的查詢信息,目前國內聯合厭氧消化相關僅有60余項,可見目前國內擁有相關自有知識產權的數量還很有限,特別是與相關知識產權數量位居前列的日本、韓國和美國相比,更是存在較大差距。
在應用方面,一般認為現有的污泥處理設施(如污泥消化池)可直接應用于聯合厭氧消化工藝,實現了設備共享。因此,污泥和餐廚垃圾的聯合厭氧消化從技術和設施上可行。但整體而言,該技術目前主要限于實驗室小規模運行,缺乏大規模應用的數據和經驗,遠未達到市場普遍應用的程度。